
Assessment: Oscillations

Multipl	e Choice: Choose	e the letter of the b	best answer. 3 po	ints each.		
1	the spring?	a spring has a nat b. 40.1 N/m.			s the spring constant of	
	a. 24.2 N/III.	D. 40.1 N/III.	c. 64.5 m/m.	u. 202.3 N/III.	e. 1610 h/m.	
2	A 2 meter long t period of oscillat a. 7.9 s.	tion?	-	-	e. None of those.	
	a. 1.5 S.	D. D. I S .	c. 2.5 S.	u. 1.0 S.	c. None of those.	
3	m/s ² . What is it	s period of motion	n?		accelerating down at 3	
	a. 0.28 s.	b. 0.38 s.	c. 1.74 s.	d. 1.99 s.	e. 2.37 s.	
Questions 4 to 6 refer to the following: The velocity of a 75 gram mass on a spring is given by the equation $\dot{x} = \pi \sin(4t)$						
4	4 What is the maximum displacement of the mass?					
	a. π.	-	c. 4π.	d. 2π.	e. 2.	
5		lowing functions v	-			
	a. $-\pi \sin(4t)$	b. $\pi \cos(4t)$	c. $-16\pi\sin(4t)$) d. $4\pi \cos(4t)$	e. $-4\pi\cos(4t)$	
6		uency of the motion. 2/π Hz.		d. 1/(2π) Hz.	e 1/(4π) Hz	
	u. 1/30 112.	6. 2 /30 112.	C. 1/30 112.	u. 1/(200) 112.	0. 1/(10) 112.	
7	a. quadruple itsc. quadruple its	double the period length. mass. e of those answer	b. divide its lend. divide its ma	lulum, what singl agth by 4. ass by 4.	e thing could you do?	
8	incline with a ba	ase angle of 30°?	-		spring on a frictionless	
	a. 0.44 s.	b. 0.77 s.	c. 0.13 s.	d. 0.94 s.	e. 0.89 s.	
Question	s 9 and 10 refer to	o the following.				

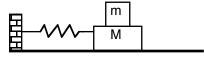
Questions 9 and 10 refer to the following:

The angular position of a simple pendulum is shown in the graph below.

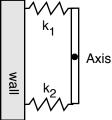
- 9. _____
 What is the length of the pendulum?

 a. 4.46 m.
 b. 57 m.
 c. 0.10 m.
 d. 6.33 m.
 e. 3.98 m.
- 10. _____ What is the angular frequency of the pendulum?a. 0.13 rad/s.b. 0.16 rad/s.c. 1.26 rad/s.d. 6.28 rad/s.e. None of those.
- 11. _____ What has to be true for an object to undergo simple harmonic motion?
 - a. It has to be attached to a spring.
 - b. Its total energy must be constant.
 - c. Its acceleration must be directly proportional to its position.
 - d. There must be a source of potential energy.

1	The kinetic energy as a function of position for a mass on a spring is given by the graph shown to the right. What is the spring constant? a. 18 N/m. b. 450 N/m. c. 0.18 N/m. d. 45 N/m. e. Need the mass to answer the question. K(J) 9 -0.2 $x(m)$ 0.2	
2	What is the equation of motion for a mass <i>m</i> attached to a spring with a spring constant of <i>k</i> that is somehow experiencing a damping force that is always proportional (by a constant <i>b</i>) to its velocity? a. $m\ddot{x} + b\dot{x} + kx = 0$ b. $m\ddot{x} - b\dot{x} - kx = 0$ c. $\ddot{x} = b\dot{x} + kx$ d. $m\ddot{x} = -(k + b)x$ e. Huh? Sadly, I have no idea what you are talking about so mark me wrong.	-
3	The amplitude of oscillation of a simple pendulum is increased from 1° to 4°. It's maximulation tangential acceleration changes by a factor ofa. 1/4.b. 1/2.c. 2.d. 4.e. 16.	ım


Problem Solving: Show all work.

15. What is meant by the term resonance?


16. The position as a function of time for an oscillating mass (2 kg) on a spring is given by $x = 6 \cos(\pi t)$, where t is in seconds and x is in meters. What is the total energy of the mass-spring system?

17. A 3 kg mass is suspended from a spring, stretching the spring a distance of 35 cm. It is then pulled down an additional 15 cm. What is its maximum speed?

18. A 2 kg mass is on top of a 3 kg mass, which is on a frictionless table. The 3 kg mass is attached to a spring of constant 60 N/m. The 2 kg mass always stays on top of the 3 kg mass without sliding, and the maximum speed the masses ever have is 2.3 m/s. What is the minimum coefficient of friction between the blocks?

19. A thin rod of mass M and length L is rotating about its center of mass. At each end, there is a spring with spring constants as shown. The springs are attached to a wall. When the system is <u>in equilibrium</u>, it is vertical, as shown. What is the period of small oscillations?

